
University of Houston - Clear Lake [Summer 2023]

CENG 3151.01: Lab for Computer Architecture

Lab 10 (Final Project): 32-bit ALU Design

Submitted by: Brandon E Ramirez

Date: 7/20/2023

Due: Thursday, July 27th, 2023
Student ID: 1952649

Computer Engineering
University of Houston – Clear Lake

Houston, Texas 77058

1



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

Contents

1 Abstract 3

2 Introduction/Goals 3

3 Requirements 3

4 Prelab 5

5 Report Write-up/Implementation 5

5.1 Design Code/Design Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.2 Schematic(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.3 Test-bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.4 Waveform/Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Conclusion 14

List of Figures

1 Black-box diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 32-bit ALU operations table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Lab 8 generated schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Timing diagram demonstrating transfer & increment operations . . . . . . . . . . . . . . . . . . . 12

5 Timing diagram demonstrating increment & decrement operations . . . . . . . . . . . . . . . . . 12

6 Timing diagram demonstrating decrement operation . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Timing diagram demonstrating addition operation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Timing diagram demonstrating not & and operations . . . . . . . . . . . . . . . . . . . . . . . . . 13

9 Timing diagram demonstrating and & or operations . . . . . . . . . . . . . . . . . . . . . . . . . 14

10 Timing diagram demonstrating xor & shift right operations . . . . . . . . . . . . . . . . . . . . . 14

11 Timing diagram demonstrating shift right & shift right operations . . . . . . . . . . . . . . . . . 14

Listings

1 I/O stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 IC source/behavior file code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 IC test-bench scr code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Lab 10 (Final Project): 32-bit ALU Design Page No. 2



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

1 Abstract

The Arithmetic Logic Unit (ALU) is a crucial component of a computer’s central processing unit (CPU). It is

responsible for performing arithmetic and logical operations necessary for processing data and executing in-

structions. The ALU’s primary purpose is to carry out calculations and make decisions based on the data it

receives from the computer’s registers and memory. Some functions of the ALU are the following:

1. Arithmetic Operations: The ALU can perform basic arithmetic calculations such as addition, subtrac-

tion, multiplication, and division.

2. Logical Operations: The ALU can execute logical operations such as AND, OR, NOT, and XOR. These

operations are vital for making decisions and determining the flow of a program based on Boolean condi-

tions.

3. Data Comparison: The ALU can compare two pieces of data and set flags based on the result of the

comparison. These flags are used to indicate whether data is equal, not equal, greater than, or less than,

enabling conditional branching and control flow in programs.

4. Bit Shift Operations: The ALU can shift the bits of binary data left or right, this can be done via ”arith-

metic” or ”logical” shifting.

5. Increment and Decrement: The ALU can increment or decrement the value of a data element by ’one’

(usually done one bit at a time).

The ALU serves as the ”computational engine” of a CPU, responsible for carrying out essential arithmetic,

logical, and comparison operations necessary to execute programs and process data.

2 Introduction/Goals

The purpose of this lab is to design a 32-bit ALU capable of performing logical, arithmetic, shifting, loading,

and storing operations with 2x 32-bit inputs. We need to be able to select the operation(s) using a control in-

put and enable a ”carry-in” input derived from preceding computations/operations. The ALU needs to output

a 32-bit result and a carry-out. We are going to replicate this behavior with the hardware description language

”VHDL” and Vivado to define, test, and generate time diagrams + schematics. The purpose of this lab is to

design a 32-bit ALU with VHDL and Vivado hardware design software.

3 Requirements

Here are the requirements: Design a 32-bit ALU which can perform arithmetic and logic operations. The de-

sign must be able to perform the following:

1. The design has two 32-bit inputs, input A and input B, they are unsigned binary numbers

2. Addition, increment, decrement and transfer (arithmetic operations)

3. AND, OR, NOT, XOR (logical operations)

Lab 10 (Final Project): 32-bit ALU Design Page No. 3



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

4. Right shift, left shift (shift operations)

5. The design must have 4-bit select line called Operation Select, which would direct the unit as to which

operation to perform

6. The unit has a Carry-in and also a Carry-out.

The block diagram of this ALU is as shown below:

Figure 1: Black-box diagram

The interface of this design is as below:

Listing 1: I/O stream

1 entity ALU_32Bits_Design is port(

2 Reg_A : in std_logic_vector (31 downto 0);

3 Reg_B : in std_logic_vector (31 downto 0);

4 Op_Sel : in std_logic_vector (3 downto 0);

5 Carry_In : in std_logic; Carry_Out : out std_logic;

6 ALU_Out : out std_logic_vector (31 downto 0)

7 );

8 end ALU_32Bits_Design;

Figure 2: 32-bit ALU operations table

Lab 10 (Final Project): 32-bit ALU Design Page No. 4



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

4 Prelab

No Pre-Lab required for this lab.

5 Report Write-up/Implementation

We will use one src/design file and one test-bench file. Our code will use Reg-A, Reg-B, Op-Sel, Carry-In,

Carry-Out, and ALU-Out to satisfy our design I/O requirements. We will use a series of if/else-statements and

a single process to achieve this logic within our source file. First, we will create a process which takes Reg-A &

Reg-B as parameters, we do this to routinely check the contents of the registers. The first instruction we will

implement is transfer, here we simply send input stream found in ”Reg-A” to ”ALU-Out”. We implement this

logic by using an if-statement which checks the contents of ”Op-Sel” (Operation select); iff it equals ”0000”,

then we know we will evaluate this particular operation. The same logic applies to the other operations. A se-

ries of if/elsif control structures will identify the appropriate operation to execute as shown in figure 2. Some

novel challenges we encountered were converting register values to type ’unsigned’ (increment/decrement/shift

operations) and manually setting Carry-Out bit depending on contents of register when evaluating computa-

tions (increment). We used the intermediary signal ”tmp-val” to assign Carry-Out value and ALU-Out in the

addition operation. Shifting was done using a VHDL built-in function, the contents of Reg-A were shifted left-

/right based on the value stored in Reg-B and sent to ALU-Out using ”std-logic-vector()”.

5.1 Design Code/Design Diagrams

Listing 2: IC source/behavior file code

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4 use ieee.std_logic_unsigned.all;

5 --use ieee.std_logic_unsigned.all;

6

7 -- Uncomment the following library declaration if instantiating

8 -- any Xilinx leaf cells in this code.

9 --library UNISIM;

10 --use UNISIM.VComponents.all;

11

12 entity final_lab_src is

13 Port ( Reg_A : in std_logic_vector (31 downto 0);--capacity is 32-bits

14 Reg_B : in std_logic_vector (31 downto 0);--capacity is 32-bits

15 Op_Sel : in std_logic_vector (3 downto 0);--4 bit value indicates the type of

operation performed

16 Carry_In : in STD_LOGIC;--carry from previous calculation

17 Carry_Out : out STD_LOGIC;--output carry from current calculation.

18 ALU_Out : out std_logic_vector (31 downto 0));

Lab 10 (Final Project): 32-bit ALU Design Page No. 5



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

19 end final_lab_src;

20

21 architecture Behavioral of final_lab_src is

22

23 signal tmp_val: std_logic_vector (32 downto 0);

24

25 begin

26

27 process(Reg_A , Reg_B)

28 begin

29

30 -- TRANSFER

31 if (Op_Sel = "0000") then

32 ALU_Out <= Reg_A;

33 -- INCREMENT

34 elsif (Op_Sel = "0001") then

35 if (unsigned(Reg_A) = x"ffffffff") then

36 ALU_Out <= std_logic_vector(unsigned(Reg_A) + 1);

37 Carry_Out <= '1';

38 else

39 ALU_Out <= std_logic_vector(unsigned(Reg_A) + 1);

40 Carry_Out <= '0';

41 end if;

42 -- DECREMENT

43 elsif (Op_Sel = "0010") then

44 ALU_Out <= std_logic_vector(unsigned(Reg_A) - 1);

45 -- ADDITION

46 elsif (Op_Sel = "0011") then

47 tmp_val <= ('0' & Reg_A) + ('0' & Reg_B) + Carry_In;

48 ALU_Out <= tmp_val (31 downto 0);

49 Carry_Out <= tmp_val (32);

50 -- NOT

51 elsif (Op_Sel = "0100") then

52 ALU_Out <= NOT Reg_A;

53 -- AND

54 elsif (Op_Sel = "0101") then

55 ALU_Out <= Reg_A AND Reg_B;

56 -- OR

57 elsif (Op_Sel = "0110") then

58 ALU_Out <= Reg_A OR Reg_B;

59 -- XOR

60 elsif (Op_Sel = "0111") then

61 ALU_Out <= Reg_A XOR Reg_B;

62 -- ARITHMETIC SHIFT RIGHT

Lab 10 (Final Project): 32-bit ALU Design Page No. 6



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

63 elsif (Op_Sel = "1000" OR Op_Sel = "1001" OR Op_Sel = "1010" OR Op_Sel = "1011") then

64 ALU_Out <= std_logic_vector(shift_right(signed(Reg_A),to_integer(unsigned(Reg_B))));

65 -- ARITHMETIC SHIFT LEFT

66 elsif (Op_Sel = "1100" OR Op_Sel = "1101" OR Op_Sel = "1110" OR Op_Sel = "1111") then

67 ALU_Out <= std_logic_vector(shift_left(signed(Reg_A),to_integer(unsigned(Reg_B))));

68 end if;

69 end process;

70 end Behavioral;

5.2 Schematic(s)

Figure 3: Lab 8 generated schematic

5.3 Test-bench

Listing 3: IC test-bench scr code

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3

4 -- Uncomment the following library declaration if using

5 -- arithmetic functions with Signed or Unsigned values

6 --use IEEE.NUMERIC_STD.ALL;

7

8 -- Uncomment the following library declaration if instantiating

9 -- any Xilinx leaf cells in this code.

10 --library UNISIM;

11 --use UNISIM.VComponents.all;

12

13 entity final_lab_tb is

14 -- Port ( );

15 end final_lab_tb;

16

17 architecture Behavioral of final_lab_tb is

Lab 10 (Final Project): 32-bit ALU Design Page No. 7



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

18

19 component final_lab_src is

20 Port ( Reg_A : in std_logic_vector (31 downto 0);

21 Reg_B : in std_logic_vector (31 downto 0);

22 Op_Sel : in std_logic_vector (3 downto 0);

23 Carry_In : in STD_LOGIC;

24 Carry_Out : out STD_LOGIC;

25 ALU_Out : out std_logic_vector (31 downto 0));

26 end component;

27

28 signal Reg_A : std_logic_vector (31 downto 0);

29 signal Reg_B : std_logic_vector (31 downto 0);

30 signal Op_Sel : std_logic_vector (3 downto 0);

31 signal Carry_In : STD_LOGIC;

32 signal Carry_Out : STD_LOGIC;

33 signal ALU_Out : std_logic_vector (31 downto 0);

34

35 begin

36 uut: final_lab_src port map (Reg_A , Reg_B , Op_Sel , Carry_In , Carry_Out , ALU_Out);

37

38 process

39 begin

40 -- A

41 Reg_A <= x"00001111";

42 Reg_B <= x"11000101";

43 Op_Sel <= "0000";

44 Carry_In <= '0';

45 wait for 10ns;

46

47 --A + 1

48 Reg_A <= x"11111111";

49 Reg_B <= x"00001111";

50 Op_Sel <= "0001";

51 Carry_In <= '0';

52 wait for 10ns;

53

54 Reg_A <= x"00001111";

55 Reg_B <= x"10101010";

56 Op_Sel <= "0001";

57 Carry_In <= '0';

58 wait for 10ns;

59

60 Reg_A <= x"10101010";

61 Reg_B <= x"00000101";

Lab 10 (Final Project): 32-bit ALU Design Page No. 8



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

62 Op_Sel <= "0001";

63 Carry_In <= '0';

64 wait for 10ns;

65

66 Reg_A <= x"11110000";

67 Reg_B <= x"00010101";

68 Op_Sel <= "0001";

69 Carry_In <= '0';

70 wait for 10ns;

71

72 --A - 1

73 Reg_A <= x"11111111";

74 Reg_B <= x"00000101";

75 Op_Sel <= "0010";

76 Carry_In <= '0';

77 wait for 10ns;

78

79 Reg_A <= x"00001111";

80 Reg_B <= x"00000101";

81 Op_Sel <= "0010";

82 Carry_In <= '0';

83 wait for 10ns;

84

85 Reg_A <= x"10101010";

86 Reg_B <= x"00000101";

87 Op_Sel <= "0010";

88 Carry_In <= '0';

89 wait for 10ns;

90

91 Reg_A <= x"00000000";

92 Reg_B <= x"00000101";

93 Op_Sel <= "0010";

94 Carry_In <= '0';

95 wait for 10ns;

96

97 --A + B + Carry_In

98 Reg_A <= x"11111111";

99 Reg_B <= x"11110101";

100 Op_Sel <= "0011";

101 Carry_In <= '1';

102 wait for 10ns;

103

104 Reg_A <= x"00001111";

105 Reg_B <= x"00001111";

Lab 10 (Final Project): 32-bit ALU Design Page No. 9



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

106 Op_Sel <= "0011";

107 Carry_In <= '0';

108 wait for 10ns;

109

110 Reg_A <= x"10101010";

111 Reg_B <= x"11110101";

112 Op_Sel <= "0011";

113 Carry_In <= '0';

114 wait for 10ns;

115

116 Reg_A <= x"11110000";

117 Reg_B <= x"01010101";

118 Op_Sel <= "0011";

119 Carry_In <= '1';

120 wait for 10ns;

121

122 --NOT A

123 Reg_A <= x"10101111";

124 Reg_B <= x"11110101";

125 Op_Sel <= "0100";

126 Carry_In <= '1';

127 wait for 10ns;

128

129 Reg_A <= x"00001111";

130 Reg_B <= x"10101111";

131 Op_Sel <= "0100";

132 Carry_In <= '0';

133 wait for 10ns;

134

135

136 --A AND B

137 Reg_A <= x"10101010";

138 Reg_B <= x"11110101";

139 Op_Sel <= "0101";

140 Carry_In <= '0';

141 wait for 10ns;

142

143 Reg_A <= x"11110000";

144 Reg_B <= x"01010101";

145 Op_Sel <= "0101";

146 Carry_In <= '1';

147 wait for 10ns;

148

149

Lab 10 (Final Project): 32-bit ALU Design Page No. 10



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

150

151

152 --A OR B

153 Reg_A <= x"11111111";

154 Reg_B <= x"11110101";

155 Op_Sel <= "0110";

156 Carry_In <= '1';

157 wait for 10ns;

158

159 Reg_A <= x"00001111";

160 Reg_B <= x"00001111";

161 Op_Sel <= "0110";

162 Carry_In <= '0';

163 wait for 10ns;

164

165

166 --A XOR B

167 Reg_A <= x"10101010";

168 Reg_B <= x"11110101";

169 Op_Sel <= "0111";

170 Carry_In <= '0';

171 wait for 10ns;

172

173 Reg_A <= x"11110000";

174 Reg_B <= x"01010101";

175 Op_Sel <= "0111";

176 Carry_In <= '1';

177 wait for 10ns;

178

179

180 --ALU_Out = Shift A to the right by 'B' amount

181 Reg_A <= x"F0101010";

182 Reg_B <= x"00000001";

183 Op_Sel <= "1000";

184 Carry_In <= '0';

185 wait for 10ns;

186

187 Reg_A <= x"11110000";

188 Reg_B <= x"0000010A";

189 Op_Sel <= "1010";

190 Carry_In <= '1';

191 wait for 10ns;

192

193 --ALU_Out = Shift A to the left by 'B' amount

Lab 10 (Final Project): 32-bit ALU Design Page No. 11



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

194 Reg_A <= x"F0101010";

195 Reg_B <= x"00000005";

196 Op_Sel <= "1100";

197 Carry_In <= '0';

198 wait for 10ns;

199

200 Reg_A <= x"11110000";

201 Reg_B <= x"00000 A0A";

202 Op_Sel <= "1101";

203 Carry_In <= '1';

204 wait for 10ns;

205 wait;

206

207 end process;

208 end Behavioral;

5.4 Waveform/Results

The vertical yellow bar hovering over the time diagram sets the moment in which a specific combination of

inputs/outputs occur. For the following time diagrams I will describe the circuits behavior by discussing the

I/O streams involved, the logic and the expected output. The expected behavior holds for all test-cases.

At 20ns we see that the contents of Reg-A are sent directly to ALU-out, as expected.

Figure 4: Timing diagram demonstrating transfer & increment operations

We see that the binary string in Reg-A is incremented by ’1’ as expected.

Figure 5: Timing diagram demonstrating increment & decrement operations

We see that the binary string in Reg-A is decremented by ’1’ as expected.

Lab 10 (Final Project): 32-bit ALU Design Page No. 12



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

Figure 6: Timing diagram demonstrating decrement operation

Here we add the contents of Reg-A (”4369”, 100ns), Reg-B(”4369”, 110ns), and Carry-In(’0’). Gives us the

result ”8738” which is valid.

Figure 7: Timing diagram demonstrating addition operation

Here we see that the op-select codes ’0100’(NOT) gives us the expected ALU-Out value at around 1̃44ns

Figure 8: Timing diagram demonstrating not & and operations

Here we see that the op-select codes ’0101’(AND) & ’0110’(OR) give us the expected ALU-Out values at around

164ns and 174ns respectively

Lab 10 (Final Project): 32-bit ALU Design Page No. 13



CENG 3151 - 01: Pagan Santiago, Miguel, M.S.C.E Brandon E Ramirez

Figure 9: Timing diagram demonstrating and & or operations

At around 194ns we see that XOR operation behaves as expected, particularly at the 4th MSB.

Figure 10: Timing diagram demonstrating xor & shift right operations

With Op-Select value ’1010’(shift right) the contents of Reg-A are shifted left by the amount declared in Reg-

B, At 224ns we see ALU-Out contains all zeros because the shift amount was too great. At 232ns we see that

’1100’(shift left) shifts Reg-A’s contents by ’101’ (Reg-B) to the left 5-bits which is what we observe in ALU-

out.

Figure 11: Timing diagram demonstrating shift right & shift right operations

6 Conclusion

In conclusion, the Arithmetic Logic Unit (ALU) is a fundamental component of a computer’s central process-

ing unit (CPU) responsible for executing arithmetic, logical, and comparison operations on data. Acting as the

computational heart of the CPU, the ALU performs tasks like addition, subtraction, multiplication, and di-

vision, as well as logical operations such as AND, OR, NOT, and XOR. It also handles data comparison, bit

shift operations, and increment/decrement functions. Working in conjunction with the control unit, the ALU

retrieves data from registers, processes it through micro-operations, and stores the results back into the regis-

ters. Its key role in implementing essential computer operations makes it the heart of the computer; executing

programs and manipulating data in all modern computing systems.

Lab 10 (Final Project): 32-bit ALU Design Page No. 14


	Abstract
	Introduction/Goals
	Requirements
	Prelab
	Report Write-up/Implementation
	Design Code/Design Diagrams
	Schematic(s)
	Test-bench
	Waveform/Results

	Conclusion

